
会员
Kafka权威指南(第2版)
更新时间:2022-12-20 18:52:10 最新章节:看完了
书籍简介
本书介绍Kafka的技术原理和应用技巧。内容包括如何安装和配置Kafka、如何使用KafkaAPI、Kafka的设计原则和可靠性保证,以及Kafka的一些架构细节,如复制协议、控制器和存储层。本书列举了一些非常流行的Kafka应用场景,比如基于事件驱动的微服务系统的消息总线、流式处理应用程序和大规模数据管道。通过学习本书,你不仅能够深入理解这项大数据核心技术,还能够将所学知识付诸实践,在生产环境中更好地运行Kafka,并基于它构建稳健的高性能应用程序。
品牌:人邮图书
译者:薛命灯
上架时间:2022-11-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)格温·沙皮拉等
同类热门书
最新上架
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字
- 会员本书是一本介绍分布式数据库基础内容与应用的大数据专业类图书,力求培养读者对分布式数据库的应用技能。本书共11章,采用原理+代码实例+综合案例的编写形式,清晰明了地介绍分布式数据库的原理、基础应用、进阶应用及主流工具的使用方法、应用场景,以理实结合为编写要求,让读者能够轻松学习和掌握分布式数据库的内容。本书可以作为高等院校计算机、网络技术等相关专业的教材,也可以作为数据库相关工作的从业人员的参考用书计算机14万字
- 会员《数据分析师手记:数据分析72个核心问题精解》从底层认知、思维方法、工具技术、项目落地及展望出发,使用问答的形式对数据分析中的72个核心知识点进行讲解,构建了数据分析的知识框架,带领读者认识数据分析背后的奥妙。读者可以用本书作为学习地图,针对具体的方法、技术进行延伸学习。计算机16.8万字
- 会员时序数据库是一种新型技术,主要用于工业互联网软件建设中。近年来,伴随着物联网技术在智能制造、交通、能源、智慧城市等领域的发展,时序数据库也发展迅速,成为搭建应用的必备数据库之一。《深入理解InfluxDB》从InfluxDB的安装开始,一步步详细介绍InfluxDB的功能及原理,带领读者深入理解以InfluxDB为代表的时序数据库。计算机7.6万字
- 会员本书共3篇:第1篇主要介绍分布式数据库基础理论,包括经典的CAP理论、一致性算法相关的理论、并发控制相关的理论等;第2篇具体介绍Greenplum数据库,从分布式事务、分布式计算和分布式存储3个方面,深入代码层级,讲述分布式理论在工业上的实现;第3篇是总结和展望,介绍云原生数据库和新技术带给Greenplum和数据库管理系统的机遇和挑战。本书打破以理论介绍和架构介绍为主的思路,深入分析工业化的实现计算机7.1万字
- 会员《MySQL从入门到精通(第3版)》从初学者角度出发,通过通俗易懂的语言和丰富多彩的实例,详细介绍了MySQL开发需要掌握的各方面技术。全书共分为4篇22章,包括数据库基础,初识MySQL,使用MySQL图形化管理工具,数据库操作,存储引擎及数据类型,数据表操作,MySQL基础,表数据的增、删、改操作,数据查询,常用函数,索引,视图,数据完整性约束,存储过程与存储函数,触发器,事务,事件,备份与恢计算机14万字
- 会员《企业级大数据项目实战:用户搜索行为分析系统从0到1》基于真实业务场景,以项目导向为主线,从0到1全面介绍企业级大数据用户搜索行为分析系统的搭建过程。全书共6章,第1章讲解项目需求与架构设计,详细阐述项目数据流与系统架构;第2章介绍大数据项目开发环境配置,手把手带领读者配置操作系统、Hadoop集群与相关工具,为后续项目实施打下基础;第3~5章逐步实现项目需求,第3章讲解用户行为数据采集模块的开发计算机9万字
- 会员数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的计算机21.6万字
同类书籍最近更新
- 会员本书从数据挖掘基础、数据挖掘经典算法、数据挖掘业务建模与模型评价、SPSSClementine数据挖掘实务这4方面对数据挖掘技术进行了全面介绍。本书共24章,分为4部分。第1部分介绍数据挖掘的基本概念及数据挖掘应用的基本原理。第2部分介绍了回归分析、贝叶斯网络、聚类分析、决策树算法、关联规则、粗糙集、神经网络模型、遗传算法等。第3部分是数据挖掘建模和模型模型评价的基础知识。第4部分包括SPSS数据库45.2万字